Article

서캐나다 셰일가스 분지별 맞춤형 생산성 향상 솔루션을 위한 암석역학적 특성 연구

최준형1, 이현석1, 김유리1, 김정현2, 이대성2,*
Junhyung Choi1, Hyun Suk Lee1, Yuri Kim1, Jeonghyun Kim2, Dae Sung Lee2,*
Author Information & Copylight
1한국지질자원연구원 석유가스연구센터
2동아대학교 에너지자원공학과
1Oil & Gas Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
2Department of Energy and Mineral Resources Engineering, Dong-A University
*Corresponding Author : Dae Sung Lee, Tel: +82-51-200-7770, Fax: +82-51-200-7771, E-mail: leeds@dau.ac.kr

ⓒ Copyright 2020 Korean Society of Petroleum and Sedimentary Geology. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permit unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: Jul 14, 2020 ; Revised: Sep 08, 2020 ; Accepted: Sep 15, 2020

Published Online: Dec 01, 2020

요약

방향성 시추 및 다단계 완결시스템을 이용한 수압파쇄와 같은 신기술의 발달로 서부 캐나다에서의 셰일가스 생산이 늘어나고 있다. 성공적인 시추와 저류층 자극을 위해서는 분지별 암석역학적 물성 및 취성도 지수를 기초로 한 차별화된 개발 방법이 필요하다. 본 연구에서는 서부 캐나다 셰일가스 개발 유망지역인 몬트니 분지와 리아드 분지 시추공 자료를 활용하여 암석역학적 물성 및 취성도 지수 분석을 실시하였다. 이 두 분지 모두 개발에 적합한 총유기탄소 함량 및 암석역학적 물성을 가지고 있어 셰일가스 저류층으로서의 큰 개발 잠재력을 보이고 있다. 특히 몬트니 분지의 몬트니 지층과 리아드 분지의 베사리버 지층의 경우 영률 40 GPa 이상, 포아송비 0.15 이하로 수압파쇄에 적합한 취성 특성을 보이는 높은 영률과 낮은 포아송비를 보인다. 이와 같은 암석역학적 특성으로 인해 셰일가스 개발에 필요한 자극기술 중 하나인 수압파쇄 기술 적용이 용이할 것으로 판단된다.

ABSTRACT

The shale gas production has increased in Western Canada due to development of new technologies for directional drilling and hydraulic fracturing using multistage completion system. The customized development method based on geomechanical properties and brittleness index for each shale play is necessary for successful implementation of drilling and reservoir stimulation. In this study two prospective shale plays, the Montney and Liard basins in Western Canada, has selected for geomechanical properties and brittleness index from available wellbore data. As the result of this study, these two basins has high TOC, optimal geomechanical property and shows great development potential. Montney Formation in the Montney Basin and Besa River Formation in the Liard Basin show high Young’s modulus and low Poisson’s ratio, which is over 40 GPa, Young’s modulus and below 0.15, Poisson’s ratio. These rock properties of shale gas reservoirs play an important role in reservoir stimulation, especially in hydraulic fracturing.

Keywords: 비전통자원; 셰일가스; 지오미케닉스; 특성화; 취성도 지수
Keywords: unconventional resource; shale gas; geomechanics; characterization; brittleness index

References

1.

Altindag, R., 2002, The evaluation of rock brittleness concept on rotary blast hold drills. Journal of the Southern African Institute of Mining and Metallurgy, 102(1), 61-66

2.

Clifton, R.J. and Abou-Sayed, A.S., 1981, A variational approach to the prediction of the three-dimensional geometry of hydraulic fractures. In SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers. 1-9 p

3.

Davies, G.R., Moslow, T.F. and Sherwin, M.D., 1997, The lower Triassic Montney formation. west-central Alberta. Bulletin of Canadian Petroleum Geology, 45(4), 474-505

4.

Dixon, J., 2000, Regional lithostratigraphic units in the Triassic Montney Formation of Western Canada. Bulletin of Canadian Petroleum Geology, 48(1), 80-83

5.

Edwards, D.E., Barclay, J.E., Gibson, D.W., Kvill, G. and Halton, E., 1990, Triassic strata of the Western Canada sedimentary basin. Bulletin of Canadian Petroleum Geology, 38(1), 163-163

6.

Euzen, T., Power, M., Crombez, V., Rohais, S., Petrovic, M. and Carpentier, B., 2014, Lithofacies, organic carbon and petrophysical evaluation of the Montney and Doig Formations (Western Canada): Contribution of quantitative cuttings analysis and electrofacies classification. In CSPG CSEG CWLS Joint Annual Convention, Calgary, 12-16 p

7.

Falode, O. and Manuel, E., 2014, Wettability effects on capillary pressure, relative permeability, and irredcucible saturation using porous plate. Journal of Petroleum Engineering, 2014(5), 1-12

8.

Ferri, F., Hickin, A.S. and Huntley, D.H., 2011, Besa River Formation, western Liard Basin, British Columbia (NTS 094N): Geochemistry and regional correlations. Geoscience Reports, 1-18 p

9.

Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P. and Fall, A., 2014, Natural fractures in shale: A review and new observations natural fractures in Shale: A review and new observations. AAPG Bulletin, 98(11), 2165-2216

10.

Gandossi, L. and Von Estorff, U., 2013, An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. European Commission, Joint Research Centre, Technical Reports,, 7-8

11.

Hajiabdolmajid, V., Kaiser, P. and Martin, C.D., 2003, Mobilised strength components in brittle failure of rock. Geotechnique, 53(3), 327-336

12.

Holt, R.M., Fjaer, E., Nes, O.M. and Alassi, H.T., 2011, A shaly look at brittleness. In 45th US Rock Mechanics/ Geomechanics Symposium. American Rock Mechanics Association, 1-10

13.

Hucka, V. and Das, B., 1974, Brittleness determination of rocks by different methods. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Pergamon, 11(10), 389-392

14.

Jarvie, D.M., Hill, R.J., Ruble, T.E. and Pollastro, R.M., 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475-499

15.

Jin, X., Shah, S.N., Roegiers, J.C. and Zhang, B., 2014a, Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers, 1-14

16.

Jin, X., Shah, S.N., Truax, J.A. and Roegiers, J.C., 2014b, A practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. Amsterdam, The Netherlands, October, 1-18 p

17.

Koncagül, E.C. and Santi, P.M., 1999, Predicting the unconfined compressive strength of the Breathitt shale using slake durability, Shore hardness and rock structural properties. International Journal of Rock Mechanics and Mining Sciences, 36(2), 139-153

18.

Liu, E., 2005, Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 8-47

19.

Mathia, E., Ratcliffe, K. and Wright, M., 2016, Brittleness index-A parameter to embrace or avoid?. In Unconventional Resources Technology Conference, San Antonio, Texas, August, 1156-1165 p

20.

Mews, K.S., Alhubail, M.M. and Barati, R.G., 2019, A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs. Geosciences, 9(7), 1-20

21.

Nygård, R., Gutierrez, M., Bratli,R. K. and Høeg, K., 2006, Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Marine and Petroleum Geology, 23(2), 201-212

22.

Rickman, R., Mullen, M.J., Petre, J.E., Grieser, W.V. and Kundert, D. 2008, A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Denver, Colorado, USA, January, 21-24 p., 1-11 p

23.

Rivard, C., Lavoie, D., Lefebvre, R., Sejourne, S., Lamontagne, C. and Duchesne, M., 2014, An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64-76

24.

Sakmar, S.L., 2011, Shale gas development in North America: An overview of the regulatory and environmental challenges facing the industry. In North American Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers

25.

Savitski, A.A. and Detournay, E., 2002, Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions. International Journal of Solids and Structures, 39(26), 6311-6337

26.

Sousa, J.L., Carter, B.J., and Ingraffea, A.R., 1993, Numerical simulation of 3D hydraulic fracture using Newtonian and power-law fluids. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 30(7), 1265-1271

27.

Tarasov, B. and Potvin, Y., 2013, Universal criteria for rock brittleness estimation under triaxial compression. International Journal of Rock Mechanics and Mining Sciences, 59, 57-69

28.

Yagiz, S., 2009, Assessment of brittleness using rock strength and density with punch penetration test. Tunnelling and Underground Space Technology, 24(1), 66-74

29.

Zhang, C., Dong, D., Wang, Y. and Guan, Q., 2017, Brittleness evaluation of the Upper Ordovician Wufeng- Lower Silurian Longmaxi shale in Southern Sichuan Basin, China. Energy Exploration and Exploitation, 35(4), 430-443

30.

Zhang, D., Ranjith, P.G., and Perera, M.S.A., 2016, The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. Journal of Petroleum Science and Engineering, 143, 158-170